iT邦幫忙

2021 iThome 鐵人賽

DAY 12
1
AI & Data

AI Voice Conversion系列 第 12

【Day12】 AutoVC 實作 Pytorch 篇 - 1

  • 分享至 

  • xImage
  •  

本次實驗參考範例來自於官方 Repo,更正了裡面的一些小 Bug 及更改最後的 Vocoder。

Part 1 - 準備資料

VCTK dataset

解壓縮後的資構應是如此,每個資料夾有約 100 多首語音不等

wavs-
    p225
     ...
     ...
    p314
    

Part 2 - 資料前處理

import os
import pickle
import numpy as np
import soundfile as sf
import librosa
from scipy import signal
from scipy.signal import get_window
from librosa.filters import mel
from librosa.util import normalize
from numpy.random import RandomState

# 你放資料的地方
rootDir = './wavs'
# 你要存 MEL 的地方
targetDir = './spmel'
dirName, subdirList, _ = next(os.walk(rootDir))
print('Found directory: %s' % dirName)


def mel_gan_handler(x, fft_length = 1024, hop_length = 256,sr = 22050):
    wav = normalize(x)
    p = (fft_length - hop_length) // 2
    wav = np.squeeze(np.pad(wav, (p, p), "reflect"))
    fft = librosa.stft(
                       wav, 
                       n_fft = fft_length, 
                       hop_length = hop_length,
                       window = 'hann',
                       center = False
                     )
    # 這裡的 abs 是 sqrt(實部**2 + 虛部**2)
    mag = abs(fft)
    mel_basis = mel(sr, 1024, fmin = 0.0 , fmax=None, n_mels=80)
    mel_output = np.dot(mel_basis,mag)
    log_mel_spec = np.log10(np.maximum(1e-5,mel_output)).astype(np.float32)
    return log_mel_spec
    
# VCTK 是 48 KHz 我們必須先 resample 到 22.05 KHz 
new_rate = 22050
for subdir in sorted(subdirList):
    if not os.path.exists(os.path.join(targetDir, subdir)):
        os.makedirs(os.path.join(targetDir, subdir))
    _,_, fileList = next(os.walk(os.path.join(dirName,subdir)))
    for fileName in sorted(fileList):
        x, fs = sf.read(os.path.join(dirName,subdir,fileName))
        # Important !!!
        # change sample rate from 48000 -> 22050
        # Since mel_gan use 22050
        x = librosa.resample(x,fs,new_rate)
        S = mel_gan_handler(x)   
         np.save(os.path.join(targetDir, subdir, fileName[:-5]),
                 S.astype(np.float32), allow_pickle=False)
     print(f"Done --- {subdir}")
        

結束之後根目錄會多一個資料夾名為 spmel,裏頭的結構跟 wavs 的一模一樣

你可以讀取裏頭的 .npy 然後再參考 Day8 的方法來確定一下是否能成功轉回語音

Part 3 - 生成 D_VECTOR

下載 Pre_train Model 後定義 D_VECTOR,這裡用的是 LSTM 版的

import torch
import torch.nn as nn

class D_VECTOR(nn.Module):
    """d vector speaker embedding."""
    def __init__(self, num_layers=3, dim_input=40, dim_cell=256, dim_emb=64):
        super(D_VECTOR, self).__init__()
        self.lstm = nn.LSTM(input_size=dim_input, hidden_size=dim_cell, 
                            num_layers=num_layers, batch_first=True)  
        self.embedding = nn.Linear(dim_cell, dim_emb)


    def forward(self, x):
        self.lstm.flatten_parameters()            
        lstm_out, _ = self.lstm(x)
        embeds = self.embedding(lstm_out[:,-1,:])
        norm = embeds.norm(p=2, dim=-1, keepdim=True) 
        embeds_normalized = embeds.div(norm)
        return embeds_normalized

接著要 Load_state_dict,注意 num_uttrs 這個參數

import os
import pickle
from model_bl import D_VECTOR
from collections import OrderedDict
import numpy as np
import torch

C = D_VECTOR(dim_input=80, dim_cell=768, dim_emb=256).eval().cpu()
c_checkpoint = torch.load('3000000-BL.ckpt',map_location=torch.device('cpu'))
new_state_dict = OrderedDict()
for key, val in c_checkpoint['model_b'].items():
    new_key = key[7:]
    new_state_dict[new_key] = val
C.load_state_dict(new_state_dict)

# 指的是說一個語者說了幾種不同內容的話,讓資料的數量盡量一樣,內容可以不一樣。
num_uttrs = 68
len_crop = 176

# Directory containing mel-spectrograms
rootDir = './spmel'
dirName, subdirList, _ = next(os.walk(rootDir))
print('Found directory: %s' % dirName)

def pad_along_axis(array: np.ndarray, target_length: int, axis: int = 0):
    pad_size = target_length - array.shape[axis]
    if pad_size <= 0:
        return array
    npad = [(0, 0)] * array.ndim
    npad[axis] = (0, pad_size)
    return np.pad(array, pad_width=npad, mode='constant', constant_values=0)

speakers = []
for speaker in sorted(subdirList[1:]):
    print('Processing speaker: %s' % speaker)
    utterances = []
    utterances.append(speaker)
    _, _, fileList = next(os.walk(os.path.join(dirName,speaker)))
    fileList = fileList[:num_uttrs]
    # make speaker embedding
    assert len(fileList) >= num_uttrs
    idx_uttrs = np.random.choice(len(fileList), size=num_uttrs, replace=False)
    embs = []
    for i in range(num_uttrs):
        tmp = np.load(os.path.join(dirName, speaker, fileList[idx_uttrs[i]]))
        # pad if the current one is too short   
        if tmp.shape[0] <= len_crop:
            pad = int(len_crop - tmp.shape[0])
            tmp = pad_along_axis(tmp,pad)
            melsp = torch.from_numpy(tmp[np.newaxis,:, :]).cuda()
    else:              
        left = np.random.randint(0, tmp.shape[0]-len_crop)
        melsp = torch.from_numpy(tmp[np.newaxis, left:left+len_crop, :]).cuda()
    emb = C(melsp)
    embs.append(emb.detach().squeeze().cpu().numpy())    
       
utterances.append(np.mean(embs, axis=0))
for fileName in sorted(fileList):
    utterances.append(os.path.join(speaker,fileName))
speakers.append(utterances)

with open(os.path.join(rootDir, 'train.pkl'), 'wb') as handle:
    pickle.dump(speakers, handle)

最後會在 ./spmel 裡生成一個 train.pkl 看起來是這樣

Part 4 - 製作 DataLoader

跟官方的一模一樣

from torch.utils import data
import torch
import numpy as np
import pickle 
import os    
from multiprocessing import Process, Manager   

class Utterances(data.Dataset):
    """Dataset class for the Utterances dataset."""

    def __init__(self, root_dir, len_crop):
        """Initialize and preprocess the Utterances dataset."""
        self.root_dir = root_dir
        self.len_crop = len_crop
        self.step = 10

        metaname = os.path.join(self.root_dir, "train.pkl")
        meta = pickle.load(open(metaname, "rb"))

        """Load data using multiprocessing"""
        manager = Manager()
        meta = manager.list(meta)
        dataset = manager.list(len(meta)*[None])  
        processes = []
        for i in range(0, len(meta), self.step):
            p = Process(target=self.load_data, 
                        args=(meta[i:i+self.step],dataset,i))  
            p.start()
            processes.append(p)
        for p in processes:
            p.join()

        self.train_dataset = list(dataset)
        self.num_tokens = len(self.train_dataset)

        print('Finished loading the dataset...')


    def load_data(self, submeta, dataset, idx_offset):  
        for k, sbmt in enumerate(submeta):    
            uttrs = len(sbmt)*[None]
            for j, tmp in enumerate(sbmt):
                if j < 2:  # fill in speaker id and embedding
                    uttrs[j] = tmp
                else: # load the mel-spectrograms
                    uttrs[j] = np.load(os.path.join(self.root_dir, tmp))
            dataset[idx_offset+k] = uttrs


    def __getitem__(self, index):
        # pick a random speaker
        dataset = self.train_dataset 
        list_uttrs = dataset[index]
        emb_org = list_uttrs[1]

        # pick random uttr with random crop
        a = np.random.randint(2, len(list_uttrs))
        tmp = list_uttrs[a]
        if tmp.shape[0] < self.len_crop:
            len_pad = self.len_crop - tmp.shape[0]
            uttr = np.pad(tmp, ((0,len_pad),(0,0)), 'constant')
        elif tmp.shape[0] > self.len_crop:
            left = np.random.randint(tmp.shape[0]-self.len_crop)
            uttr = tmp[left:left+self.len_crop, :]
        else:
            uttr = tmp

        return uttr, emb_org


    def __len__(self):
        """Return the number of spkrs."""
        return self.num_tokens




def get_loader(root_dir, batch_size=2, len_crop=176, num_workers=0):
    """Build and return a data loader."""

    dataset = Utterances(root_dir, len_crop)

    worker_init_fn = lambda x: np.random.seed((torch.initial_seed()) % (2**32))
    data_loader = data.DataLoader(dataset=dataset,
                                  batch_size=batch_size,
                                  shuffle=True,
                                  num_workers=num_workers,
                                  drop_last=True,
                                  worker_init_fn=worker_init_fn)
    return data_loader
    

使用的時候你只需要

vcc_loader = get_loader('./spmel', BATCH_SIZE, LEN_CROP)
for j in range(step): 
    try:
        x_real, emb_org = next(data_iter)
    except:
        data_iter = iter(vcc_loader)
        x_real, emb_org = next(data_iter) 
        ###
        train model here
        ###
        

就可以了

小結

明天繼續努力!!!

/images/emoticon/emoticon09.gif/images/emoticon/emoticon13.gif/images/emoticon/emoticon14.gif/images/emoticon/emoticon22.gif/images/emoticon/emoticon28.gif


上一篇
【Day11】 AutoVC 簡介
下一篇
【Day13】 AutoVC 實作 Pytorch 篇 - 2
系列文
AI Voice Conversion30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言